BahanAjar disusun dengan tujuan: 1. Menyediakan Bahan Ajar yang sesuai dengan tuntutan kurikulum dengan mempertimbangkan kebutuhan peserta didik, yakni Bahan Ajar yang sesuai dengan karakteristik dan setting atau lingkungan sosial peserta didik. 2. Membantu peserta didik dalam memperoleh alternatif Bahan Ajar di samping buku-buku teks yang terkadang sulit diperoleh 3. Memudahkan guru dalam

BARISAN DAN DERET Barisan adalah suatu susunan bilangan yang dibentuk menurut suatu urutan tertentu. Bilangan-bilangan yang tersusun tersebut disebut suku. Perubahan di antara sukusuku berurutan ditentukan oleh ketambahan bilangan tertentu atau suatu kelipatan bilangan tertentu. Jika barisan yang suku berurutannya mempunyai tambahan bilangan yang tetap, maka barisan ini disebut barisan aritmetika. Misal a. 2, 5, 8, 11, 14, ……………. ditambah 3 dari suku di depannya b. 100, 95, 90, 85, 80, …….. dikurangi 5 dari suku di depannya Jika barisan yang suku berurutannya mempunyai kelipatan bilangan tetap, maka disebut barisan geometri. Misal a. 2, 4, 8, 16, 32, 64, 128, ………. dikalikan 2 dari suku di depannya b. 80, 40, 20, 10, 5, 2Β½, ………… dikalikan Β½ dari suku di depannya DERET Deret adalah jumlah dari bilangan dalam suatu barisan. Misal Deret aritmetika deret hitung 2 + 4 + 6 + 8 + 10 = 30 Deret geometri deret ukur 2 + 4 + 8 + 16 + 32 = 62 BARISAN DAN DERET ARITMETIKA Barisan Aritmatika U1, U2, U3, …….Un-1, Un disebut barisan aritmatika, jika U2 – U1 = U3 – U2 = …. = Un – Un-1 = konstanta Selisih ini disebut juga beda b = b =Un – Un-1 Suku ke-n barisan aritmatika a, a+b, a+2b, ……… , a+n-1b U1, U2, U3 …………., Un Rumus Suku ke-n Un = a + n-1b = bn + a-b Fungsi linier dalam n Misal 2, 5, 8, 11, 14, ………an a1 = 2 = a a2 = 5 = 2 + 3 = a + b a3 = 8 = 5 + 3 = a + b + b = a + 2b a4 = 11 = 8 + 3 = a + 2b + b = a + 3b an = a + n-1 b Jadi rumus suku ke-n dalam barisan aritmetika adalah b a a n 1 n 1 = + – atau S a n 1b n 1 = + – dimana Sn = an = Suku ke-n a1 = suku pertama b = beda antar suku n = banyaknya suku contoh soal 1. Suatu barisan aritmatika suku ke 3 nya adalah -1 dan suku ke-7 nya 19. tentukan U70 Solusi Kurangi U3 dengan U7 20 = 4b Dari b=5, masukkan ke persamaan U7 19 =a +30 a= -11 U70 = 334 Deret Aritmetika Deret Hitung a + a+b + a+2b + . . . . . . + a + n-1 b disebut deret aritmatika. a = suku awal b = beda n = banyak suku Un = a + n – 1 b adalah suku ke-n Jumlah n suku Sn = 1/2 na+Un = 1/2 n[2a+n-1b] = 1/2bnΒ² + a – 1/2bn Fungsi kuadrat dalam n Keterangan Beda antara dua suku yang berurutan adalah tetap b = Snβ€œ Barisan aritmatika akan naik jika b > 0 Barisan aritmatika akan turun jika b 1 = a1-rn/1-r , jika r Un-1 Barisan geometri akan turun, jika untuk setiap n berlaku Un < Un-1 Bergantian naik turun, jika r < 0 Berlaku hubungan Un = Sn – Sn-1 Jika banyaknya suku ganjil, maka suku tengah _______ __________ Ut = Γ– U1xUn = Γ– U2 X Un-1 dst. Jika tiga bilangan membentuk suatu barisan geometri, maka untuk memudahkan perhitungan, misalkan bilangan-bilangan itu adalah a/r, a, ar DERET GEOMETRI TAK BERHINGGA Deret Geometri tak berhingga adalah penjumlahan dari U1 + U2 + U3 + ………………………… Β₯ Γ₯ Un = a + ar + arΒ² ……………………. n=1 dimana n Β₯ dan -1 < r < 1 sehingga rn 0 Dengan menggunakan rumus jumlah deret geometri didapat Jumlah tak berhingga SΒ₯ = a/1-r Deret geometri tak berhingga akan konvergen mempunyai jumlah untuk -1 < r < 1 Catatan a + ar + ar2 + ar3 + ar4 + …….………. Jumlah suku-suku pada kedudukan ganjil a+ar2 +ar4+ ……. Sganjil = a / 1-rΒ² Jumlah suku-suku pada kedudukan genap a + ar3 + ar5 + …… Sgenap = ar / 1 -rΒ² Didapat hubungan Sgenap / Sganjil = r

MATERIMATEMATIKA KELAS 10: BARISAN DAN DERET Ditulis oleh Muhammad Rofiudin. Senin, Januari 22, 2018 Tambah Komentar BARISAN DAN DERET Barisan adalah suatu susunan bilangan yang dibentuk menurut suatu urutan tertentu. Bilangan-bilangan yang tersusun tersebut disebut suku. Perubahan di antara sukusuku berurutan ditentukan oleh ketambahan
Rangkuman pembahasan barisan dan deret Bab 2 Kurikulum Merdeka Matematika Kelas X – Pada bab 2 Matematika Kurikulum Merdeka Kelas X, materi yang dibahas adalah tentang barisan dan deret. Ada berbagai soal barisan dan deret yang telah diberikan dalam Kurikulum Merdeka ini. Nah, untuk mempermudah memahaminya, berikut ini ringkasan pembahasan bab 2 barisan dan deret Kurikulum Merdeka Matematika Kelas X SMA. Barisan bilangan adalah pola bilangan yang disusun berdasarkan aturan tertentu. Contoh Suku ke-1 dilambangkan dengan U1= ... Suku ke-2 dilambangkan dengan U2= ... Suku ke-3 dilambangkan dengan U3= ... Suku ke-4 dilambangkan dengan U4= ... Suku ke-n dilambangkan dengan Un Sehingga, barisan bilangan dapat dinyatakan dalam bentuk umum, yaitu U1, U2, U3, U4,……..,Un. Baca Juga Menghitung Luas dan Keliling Lingkaran dengan Konsep Barisan dan Deret, Jawaban Soal Penalaran Latihan Halaman 58 Buku Kurikulum Merdeka Matematika Kelas X Barisan bilangan dibagi menjadi dua, yaitu barisan aritmetika dan barisan geometri. Barisan aritmetika adalah suatu barisan dengan beda atau selisih antara dua suku berurutan selalu tetap atau konstan. Beda pada barisan aritmetika dilambangkan dengan b. Untuk mencari beda, dapat dilakukan dengan cara mengurangkan dua suku yang berurutan sehingga dapat dituliskan sebagai berikut. b = U2 – U1 b = U3 – U2 b = U4 – U3 dan seterusnya. Jadi, beda pada barisan aritmetika dapat dinyatakan dengan b = Un – Un–1 Rumus umum menentukan suku ke-n pada barisan aritmetika adalah Un = a + n - 1 b Keterangan Un = suku ke-n a = suku pertama Baca Juga Jawaban Lengkap Soal Aplikasi Latihan Barisan dan Deret Halaman 58 Buku Kurikulum Merdeka Matematika Kelas X n = nomor suka b = beda Barisan geometri adalah suatu barisan dengan rasio antara dua suku berurutan selalu tetap atau konstan. Rasio pada barisan geometri dilambangkan dengan r. Seperti yang telah diuraikan di atas, untuk mencari rasio dapat dengan membagi dua suku yang berurutan. Dengan demikian, dapat dituliskan sebagai berikut. r = U2/U1 r = U3/U2 r = U4/U3 dan seterusnya Jadi, rasio pada barisan geometri dapat dinyatakan dengan r = Un/Un-1 Rumus umum menentukan suku ke-n pada barisan geometri adalah Un = Baca Juga Kunci Jawaban Lengkap Soal Pemahaman Barisan dan Deret Latihan Halaman 57 Buku Kurikulum Merdeka Matematika Kelas X Keterangan Un = suku ke-n a = suku pertama n = nomor suka r = rasio Deret bilangan adalah jumlah suku-suku penyusun barisan bilangan. Deret bilangan terdiri dari deret aritmetika dan deret geometri. Deret aritmetika adalah suatu deret yang diperoleh dari menjumlahkan suku-suku pada barisan aritmetika. Dari barisan aritmetika U1, U2, U3, U4, … … …, Un Dapat dibentuk deret aritmetika U1 + U2 + U3 + U4 + … … … + U10 U1 = a Baca Juga Menentukan Nilai Deret Geometri Tak Hingga, Soal dan Jawaban Lengkap Latihan Halaman 56 Kurikulum Merdeka Matematika Kelas X U2 = a + b U3 = a + 2b U4 = a + 3b U5 = a + 4b U6 = a + 5b U7 = a + 6b U8 = a + 7b U9 = a + 8b U10 = a + 9b Rumus untuk menghitung jumlah suku-suku deret aritmetika adalah Sn = n/2 a + Un atau Sn = n/2 2a + n-1b Baca Juga Jawaban Lengkap Soal Ayo Berlatih Hubungan Bilangan Avogadro dan Jumlah Mol Halaman 83 IPA Kelas X Kurikulum Merdeka Keterangan Sn = jumlah deret sebanyak n suku pertama a = suku pertama b = beda n = banyaknya suku Sementara itu, rumus untuk menghitung jumlah suku-suku deret geometri adalah Sn = arn – 1 / r -1, untuk r β‰  1 dan r > 1. Sn = a1 - rn / 1- r, untuk r β‰  1 dan r 1 Sn = a1 - rn / 1- r, untuk r β‰  1 dan r 1 S∞ = a Β± ∞ / 1 – r = Β± ∞. Nah, itulah dia ringkasan materi barisan dan deret bab 2 Matematika Kurikulum Merdeka Kelas X SMA. Baca Juga Menghitung Barisan dan Deret Geometri, Soal dan Kunci Jawaban Lengkap Latihan Halaman 45 Kurikulum Merdeka Matematika Kelas X Artikel ini merupakan bagian dari Parapuan Parapuan adalah ruang aktualisasi diri perempuan untuk mencapai mimpinya. PROMOTED CONTENT Video Pilihan
MatematikaKelas 7 Semester 2 Halaman 83 27 June 2022; Lirik Lagu All I Ask Dan Terjemahan 27 June 2022; Lirik Sholawat Lir Ilir Setelah sebelumnya Salman Project membahas tentang Barisan Dan deret Aritmetika sekarang akan membahas tentang Barisan dan Deret Geometri. Dan juga Video pembelajaran yang akan membimbing kalian semua agar bisa mengerjakan soal BArisan dan Deret Geometri. Untuk Video pembahasan Barisan dan Deret Geometri Kamu dapat melihatnya disini Pola dari barisan dan deret geometri tidaklah sama dengan pola dari barisan dan deret aritmatika. Untuk itu, Anda perlu berhati-hati jika menemukan suatu barisan atau deret bilangan. Supaya tidak keliru maka Anda harus bisa membedakan antara barisan dan deret aritmetika dengan barisan dan deret geometri. 1. Barisan Geometri Perhatikan barisan bilangan berikut. β€’ 2, 4, 8, 16,… β€’ 81, 27, 9, 3,… Pada kedua barisan tersebut, dapatkah Anda menentukan pola yang dimiliki oleh masing-masing barisan? Tentu saja pola yang didapat akan berbeda dengan pola yang Anda dapat ketika mempelajari barisan aritmetika. Selanjutnya, cobalah Anda bandingkan antara setiap dua suku yang berurutan pada masing-masing barisan tersebut. Apa yang Anda peroleh? Ketika Anda membandingkan setiap dua suku yang berurutan pada barisan tersebut, Anda akan mendapatkan perbandingan yang sama. Untuk barisan yang pertama, diperoleh perbandingan sebagai berikut. 4/2=2, 8/4=2, 16/8=2,…. Bilangan 2 disebut sebagai rasio dari barisan yang dilambangkan dengan r. Barisan yang memiliki rasio seperti ini dinamakan barisan geometri. 2. Deret Geometri Secara umum, dari suatu barisan geometri dengan dan rasio r, Anda dapat memperoleh bentuk umum deret geometri, yaitu = . Seperti pada deret aritmetika, jika Anda menjumlahkan barisan geometri maka Anda akan memperoleh deret geometri. Jika menyatakan jumlah n suku pertama dari suatu deret geometri maka Anda peroleh …1 Untuk mendapatkan rumus jumlah n suku pertama deret geometri, kalikanlah persamaan 1 dengan r, diperoleh …2 Seperti pada deret aritmetika, pada deret geometri pun Anda akan memperoleh jumlah deret geometri. Selanjutnya, cari selisih dari persamaan 1 dan persamaan 2. Dalam hal ini, Pandang Sehingga Definisi Deret Geometri Misalkan adalah barisan geometri maka pemjumlahan adalah deret geometri. Definisi Suku ke-n suatu barisan geometri adalah Un. Contoh Jika , dan = 8k + 4 maka = … a. 81 b. 162 c. 324 d. 648 e. 864 Jawab langkah pertama tentukan nilai r. = 3k / k = 3 Selanjutnya, tentukan nilai k. = 3 = 9k = 8k + 4 k = 4 Oleh karena = k maka = 4, dengan demikian, Rumus Jumlah n Suku Pertama dari Deret Geometri Misalkan merupakan deret geometri, dengan suku pertama adan rasio r, maka jumlah n suku pertama dari deret tersebut adalah atau Contoh Diketahui deret 4 + 12 + 36 + 108 … Tentukan a. rumus jumlah n suku pertama, b. jumlah 7 suku pertamanya Jawab 4 + 12 + 36 + 108 … Dari deret tersebut diketahui a = 4 dan r = 12/4 = 3 Jadi, rumus umum jumlah n suku pertama deret tersebut adalah Jumlah 7 suku pertama = 22187 – 1 = 4372 Jadi, jumlah 7 suku pertamanya adalah

2 Tentukan suku ke-10 dari barisan 64, 32, 16, 8, .Pertanyaan singkat di bawah ini dapat membantu kalian dalam menjawab soal nomor 2.β€’ Berapa rasio pada ba

Tujuan penelitian ini yaitu untuk mengetahui efektivitas pembelajaran matematika berbasis multiple intelligences berbantuan media bonsangkar terhadap hasil belajar siswa, ditinjau dari ketuntasan hasil belajar berbasis multiple intelligences, aktivitas siswa, aktivitas guru, dan respon siswa. Penelitian ini menggunakan pendekatan kuantitatif quasi eksperimental dengan desain penelitian untreaded control group design with pretest and posttest. Sampel yang digunakan adalah seluruh siswa kelas IV SDN Kamal 2. Pengumpulan data menggunakan teknik tes, observasi, dan angket. Data yang telah terkumpul kemudian dianalisis menggunakan uji statistik. Pembelajaran matematika berbasis multiple intelligences berbantuan media bonsangkar dinyatakan efektif karena secara klasikal 91,67% hasil belajar siswa dinyatakan tuntas, terdapat hubungan positif secara simultan antara tingkat kecenderungan kecerdasan matematis logis dan visual spasial terhadap hasil belajar siswa sebesar 0,886 dengan kategori ... ContohSoal yang Berkaitan dengan Baris dan Deret dalam Model Perkembangan Usaha. 1. Perusahaan genteng "Sokajaya" menhasilkan 3000 buah genteng pada bulan pertama produksinya. Dengan penambahan tenaga kerja dan peningkatan produktivitas, perusahaan mampu menambah produksinya sebanyak 500 buah setiap bulan.
COBA GRATISKonsep Kilat0%GRATISPrasyarat Barisan dan Deret0%Suku Tengah dan Sisipan Aritmetika dan Geometri0%Deret Geometri Tak Hingga0%Aplikasi Deret Aritmetika dan Geometri0%Latihan Soal Barisan dan Deret0%
Padapertemuan ini kita membahas contoh Soal Materi Pola dan Barisan Bilangan Kelas 8 SMP/MTS. Materi ini terdapat dalam salah satu bab Pelajaran Matematika kelas 8 kurikulum 2013 terbaru. Materi untuk kumpulan contoh soal ini mencakup bentuk - bentuk pola, barisan (Aritmatika, Geometri) dan deret bilangan. Feb08 2016 Barisan dan deret kelas 10 1. Suku ke-4 dan suku ke-9 suatu barisan aritmatika berturut-turut adalah 110 dan 150. Soal barisan dan deret 12 ipspdf. 1 Phibeta1000 Soal dan Solusi Persamaan Kuadrat 2017 BARISAN DAN DERET 1. Maka suku ke 10 barisan aritmetika dihitung dengan rumus. Jadi Gengs harus sudah menguasai materi tentang Kelas 10 : Mapel: Matematika RPP Barisan & Deret Aritmatika merupakan RPP yang dibuat untuk seleksi mengajar guru penggerak angkatan 7. RPP ini merupakan RPP luring yang dilaksankaan di SMK Negeri 4 Batam. mohon masukan dan saran. {{ statusLike }} Kompleks Kementerian Pendidikan dan Kebudayaan Jalan Jenderal Sudirman, Senayan Jakarta Njzbgw.
  • 8er952lf3i.pages.dev/2
  • 8er952lf3i.pages.dev/389
  • 8er952lf3i.pages.dev/352
  • 8er952lf3i.pages.dev/437
  • 8er952lf3i.pages.dev/281
  • 8er952lf3i.pages.dev/12
  • 8er952lf3i.pages.dev/83
  • 8er952lf3i.pages.dev/433
  • baris dan deret kelas 10